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Pressure of correlated layer-charge and counterion fluctuations in charged thin films

D. B. Lukatsky and S. A. Safran
Department of Materials and Interfaces, Weizmann Institute, Rehovot, 76100 Israel

~Received 3 May 1999!

We predict the fluctuation contribution to the interaction between two surfaces with both mobile layer
charges and delocalized counterions. The correlation~coupling! between the layer-charge fluctuations and the
counterion fluctuations~around a piecewise homogeneous mean-field density profile! is taken into account in
the Gaussian approximation. We find that this correlation significantly increases the magnitude of the interlayer
fluctuation attraction. The counterion fluctuation pressure is calculated as a function of the intersurface distance
and we show how the large and small distance limits correspond to three-dimensional~3D! and 2D fluctua-
tions, respectively. In addition, we predict the charge density-density correlation functions. Experimental
implications of the model are discussed.@S1063-651X~99!13911-4#

PACS number~s!: 68.45.2v, 87.16.2b, 82.65.Dp
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I. INTRODUCTION AND SUMMARY OF RESULTS

Fluctuation-induced attractive forces may be import
for many effects in charged systems, including membr
adhesion, DNA condensation, colloidal stability~see, e.g.,
references in@1#!, shear response@2#, and modification of
bending rigidity@3#. Early direct measurements of forces b
tween charged surfaces immersed in aqueous electrolyte
lution suggested an anomalous long-range attractive com
nent of the force @4#. Several experimental technique
developed recently have made it possible to measure
weak forces between charged objects on a variety of len
scales and at various electrolyte concentrations@5,6#. The
ideas of counterion-mediated attraction were applied to st
the interaction between like-charged rigid polyelectroly
@7#; the correlation effects in the counterion system w
strong Coulomb coupling were investigated in Ref.@8#.

Previous theoretical approaches to the problem
fluctuation-induced interactions in charged, thin films
cluded both numerical and analytical methods. Guldbra
et al. @9# accounted for the correlated fluctuations in the i
clouds of the two surfaces using Monte Carlo simulatio
and found a net attractive interaction of the van der Wa
type; however, no analytical law for the interaction was
tablished at that time. Later, a number of numerical, integ
equation studies confirmed their results@10,11#. Since, there
have been several attempts to obtain the explicit analyt
laws of attractive, double layer interactions@1,12–17#. All of
them go beyond the mean-field Poisson-Boltzmann~PB!
treatment that predicts only a repulsive contribution to
total interaction. The problem where all mobile charges
localized in the plane of the surface~we term these the layer
charge fluctuations! was first considered by Attardet al. @12#
using a thermodynamic perturbation theory. In the regime
the asymptotically large intersurface separations they foun
21/h3 scaling law for the fluctuation pressure between
surfaces separated by a distanceh. Pincus and Safran@1#
have recently addressed a similar problem, and using a
ferent approach also considered the small distance li
They found that the fluctuation pressure scales
21/(l2h) in the limit of small intersurface separationsh
!l, where l5(2pl s0)21 is the Gouy-Chapman lengt
PRE 601063-651X/99/60~5!/5848~10!/$15.00
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ands0 is the total surface number density of mobile charg
we show below that the Bjerrum lengthl 5e2/(ekbT)
should be small compared toh in order that the harmonic
approximation used in Ref.@1# be applicable.

Several authors have addressed the problem with flu
ating delocalized chargeswithin the volume between the
surfaces@13–16#; however, the layer charges were fixed
these studies. The inhomogeneity of the mean-field coun
ion ~and coion, if salt is added! density profile makes this
problem extremely difficult to treat analytically. In th
present work, we show how this inhomogeneity can
treated in a simple, analytical approximation. Our new
sults include predictions for the coupling of the layer-char
and counterion fluctuations; surprisingly, this contribution
larger than the fluctuations of either the layer charges or
counterions alone.

Our theory is based on an extension of the Gaussian fl
tuation approach introduced by Pincus and Safran@1#, to
account self-consistently for the fluctuations of both lay
charges and delocalized counterions~the correlation of the
fluctuations of layer and delocalized charges was not con
ered in the references quoted above!. We approximate the
inhomogeneous mean-field counterion distribution by
piecewise uniform one in two asymptotic regimes:~i! in the
regime h!l, where the counterions are almost uniform
distributed between the surfaces;~ii ! in the limit h@l, where
almost all counterions are localized in the vicinity of th
surfaces~condensed counterions! and the remainder~delo-
calized counterions! are almost uniformly distributed in the
space between the surfaces.

We find in Sec. II that thetotal fluctuation pressureP
may be represented as a sum of two contributions:

P5P l1Pc.

The first termP l5P0
l 1Pcoup

l is the pressure due to th
layer-charge fluctuations~and condensed counterion fluctu
tions in the limith@l) P0

l , plus an additional contribution
Pcoup

l due to their coupling with the counterion fluctuation
~delocalized counterion fluctuations in the limith@l); note
that onlyP0

l was considered in Ref.@1#. We find thatPcoup
l

scales as21/(l2h) and 2 ln(h/l)/h3 in the limit h!l and
5848 © 1999 The American Physical Society
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h@l, respectively. While the last result2 ln(h/l)/h3 is simi-
lar to that obtained before for a system with only counterio
@13,15#, we show here that this largest contribution to t
total fluctuation pressurecomes from the coupling betwee
the fluctuating condensed charges and the delocal
charges@18#.

The second contribution to the fluctuation pressure,Pc,
represents the fluctuation pressure of the free plasma
counterions~delocalized counterions in the limith@l). Our
approach shows in an intuitive manner that the counte
behavior goes continuously from two-dimensional-like~2D-
like! to 3D-like, ash increases. The fluctuation pressurePc

for smallh can be derived by considering the counterions
a 2D Coulomb gas with the smallest length scale equa
that of the film thicknessh; of course, we also present a mo
complex formula valid for the entire range ofh/l. In Sec. III
we find thatPc;21/(l2h), if h!l, andPc;21/h3, if h
@l. The scaling law in the limith!l is different from that
of an asymptotically large system. In Sec. IV we give a co
prehensive picture of the scaling behavior of density-den
inter- and intralayer correlation functions, and analyze
region of applicability of the model. Finally, the fluctuatio
attraction is compared numerically with the mean-fie
~Poisson-Boltzmann! repulsion.

II. TWO LAYERS WITH DELOCALIZED COUNTERIONS

We consider two overall neutral layers separated b
distanceh with negative mobile layer charges (s0 is the
average surface charge density! and positive counterions
screening the layer charges. The layer charges are fre
move within the planes and counterions are allowed to
cupy the entire volume between the planes@19#. The surfaces
are immersed in the solvent which is treated as a struct
less continuum with a homogeneous dielectric constane.
Our goal is to calculate the contribution to the pressure
tween the surfaces arising from the thermal fluctuations o
the mobile charges~both layer charges@1# and counterions,
including their coupling!.

The electrostatic free energyF of the system~the effec-
tive Hamiltonian in our problem! may be represented as
sum of the entropy of charges in an ideal gas approxima
and the electrostatic interaction energy@20#:

bF5(
i 51

3 E dr ni~r !@ ln„ni~r !v0…21#

1
l

2 (
i , j 51

3

zizjE dr dr 8
ni~r !nj~r 8!

ur2r 8u
, ~1!

wheren1(r )5s1(r)d(z2h) andn2(r )5s2(r)d(z) are vol-
ume number densities of the layer charges in layers 1 an
respectively, andn3(r ) is the counterion density,r5(x,y);
zi is the charge number of thei th species,z15z2521, z3
51; v0 is the volume per ion,l .7 Å, b[1/(kbT), ande
.80 for water.

The fluctuation contribution to the free energyG is deter-
mined by the average
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e2bG5E Dds1~r!Dds2~r!Ddn3~r !e2bDF, ~2!

and the corresponding fluctuation pressure between the
ers is

P52
1

A0

]G

]h
, ~3!

where A0 is the surface area, withDF being the second
variation of the effective Hamiltonian,

bDF5
1

2E dn3~r !Fd~r2r 8!

n0~z!
1

l

ur2r 8u
Gdn3~r 8!dr dr 8

1
1

2 (
i 51,2

E ds i~r!Fd~r2r8!

s0
1

l

ur2r8u
G

3ds i~r8!dr dr8

1E ds1~r!
l

A~r2r8!21h2
ds2~r8!dr dr8

2E ds1~r!
l

A~r2r8!21~z82h!2
dn3~r 8!dr dr 8

2E ds2~r!
l

A~r2r8!21z82
dn3~r 8!dr dr 8, ~4!

whereds1,2(r)5s1,2(r)2s0, anddn3(r )5n3(r )2n0(z) is
the fluctuation of the counterion density around its me
field profile n0(z) @20#:

n0~z!5
n0

cos2 k0~z2h/2!
, ~5!

wheren0 is the number density of counterions on the m
planez5h/2, andk0

252pn0l ; n0 is determined by the tota
charge conservation condition

E
0

h

n0~z!dz52s0 , ~6!

which givesk0h tan(hk0/2)5h/l; here l5(2pl s0)21 is
the Gouy-Chapman length.

We proceed further by approximating the inhomogene
distributionn0(z) in Eq. ~4! by a piecewise uniform one~see
below!. There are two regimes in the problem associa
with the magnitude of the parameterh/l, when this approxi-
mation can be justified~see, e.g.,@20#!. These limits ofh
!l and h@l are analyzed in Secs. II A and II B, respe
tively.

Once one makes the approximation of a piecewise u
form counterion density distribution, one can represent
pressureP in both asymptotic limits in the form

P5P l1Pc, ~7!

wherePc is the pressure due to those terms in the free
ergy corresponding to the thermal fluctuations of thefree
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~i.e., not correlated with the layer-charge fluctuations! coun-
terions~delocalized counterions in the limith@l) confined
within the finite volume of the film~see the Appendix for a
derivation!:

Pc52
kbT

2

]

]h (
kz

E dq

~2p!2
lnF11

4pl n0

k2
@12v~k!#G ,

~8!

with q5(qx ,qy), k25q21kz
2 , kz52pm/h, m is an integer,

andv(k) is given by Eq.~A6!; Pc will be discussed in Sec
III. Here we note that argument of the logarithm in Eq.~8! is
inversely proportional to the counterion density correlat
function. Our result for this function interpolates between
behavior of the counterion fluctuations whenh→` and the
Fourier transform of the Coulomb interaction scales as 1k2,
and 2D behavior whenh→0 ~for kz50) and the Coulomb
interaction scales as 1/q. What is new in our expression fo
P l in Eq. ~7! is the pressure due to the layer-charge fluct
tions modified by their coupling with the counterion fluctu
tions:

P l5P0
l 1Pcoup

l . ~9!

Here P0
l is the contribution exclusively due to the laye

charge fluctuations~only P0
l was analyzed in@1#!, andPcoup

l

is the contribution due to thecoupling of the layer-charge
fluctuations with the counterion fluctuations. We now e
plain how we approximate the inhomogeneous counte
distribution by a piecewise uniform one and specifyP l in the
limits h!l ~Sec. II A! andh@l ~Sec. B!.

A. Limit of small intersurface separations h!l

In the limit h!l ~ideal gas limit!, the counterions are
nearly uniformly distributed between the two layers. The
tal charge conservation condition, Eq.~6!, then implies,

n052s0 /h.

The idea is thus to approximaten0(z) in Eq. ~4! by n0
52s0 /h. After the calculation of Eqs.~2! and ~3!, where
one expands in the small parameterh/l, we obtain the
asymptotic contributions toP0

l , Pcoup
l , andP l , respectively

~see Appendix A1!:

P0
l 52

kbT

4pl2h
, ~10!

Pcoup
l 52

kbT

pl2h
, ~11!

P l52
5kbT

4pl2h
. ~12!

We stress again that onlyP0
l was analyzed by Pincus an

Safran@1# in the problem where the purely layer-charge flu
tuations were considered~without coupling to the counterion
fluctuations included!. Our results show that the couplin
contribution Pcoup

l is a factor of 4 larger than the direc
-

-
n

-

-

layer-charge fluctuation attraction. This coupling leads to
significant increase of the pressureP l compared toP0

l : P l

55P0
l .

We note that there is a contribution to the total pressureP
that comes from the thermal fluctuations of thefree coun-
terions,Pc @see Eqs.~7! and ~8! and explanation there#. As
shown in detail in Sec. III, we find

Pc52
kbT

2pl2h
, ~13!

and note thatPc has the same scaling21/h as P l . The
coupling contribution is also larger thanPc by a factor of 2.

B. Limit of large intersurface separations h@l

In the opposite limit ofh@l ~high charge density limit!,
it follows from the analysis of a mean-field solution fo
n0(z) that most of the counterions are localized very near
surfaces~condensed counterions!, and the remainder~delo-
calized counterions! are almost uniformly distributed in the
space between the surfaces@21#. In this limit h@l, we ap-
proximate @20# the delocalized counterion distribution be
tween the surfaces by the volume number density equa
that on the midplanez5h/2:

n05p/~2l h2!.

The surface number density of the condensed counterionsc
in each layer~in addition tos0 due to the layer charges! is
then

sc5s0~12p2l/2h!, ~14!

as implied by Eq.~6!; of course, the condensed counterio
are positively charged, while the layer charges are nega
Hence, in this limith@l, Eq. ~1! should be extended to
include condensed counterions as an additional specie
positive layer charges. The details of the calculation for t
scenario are reported in Appendix A 2. The principal con
butions toP0

l andPcoup
l are

P0
l 52

z~3!

8p

kbT

h3
, ~15!

Pcoup
l .2

kbT

h3 S p

2
ln~2h/l!22D , ~16!

wherez is the Riemann zeta function. We note that the a
plitude 2z(3)/(8p).20.048 is universal for this interac
tion, induced by the long-ranged fluctuations in the limith
@l @12,22#.

The pressurePc, Eq. ~8!, due to the thermal fluctuation
of the free delocalized counterionsin this limit h@l ~see
Sec. III for details!, is

Pc.2
4kbT

h3
,

and the total fluctuation pressureP in the limit h@l is thus
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P5P l1Pc.2
kbT

h3 S z~3!

8p
121

p

2
ln~2h/l! D . ~17!

For the case where the layer charges are fixed~nonfluctuat-
ing!, our results are similar to that obtained by Attard usin
more complicated approach@Eq. ~3.14! in @13##:

PAttard.2
kbT

h3 S z~3!

8p
121

p

2
ln~h/l! D . ~18!

The extra factor of 2 in the logarithm of Eqs.~16! and ~17!
compared to Eq.~18! is due to the extra fluctuating laye
charge component considered in our model, with an aver
surface number density of charges0 ~see Appendix A 2!. We
emphasize that only the coupling contributionPcoup

l to the
total fluctuation pressureP depends onl ~and, hence, on
s0) in this limit h@l. While our result, Eq.~17!, is not new,
we believe that it is still important because~i! it shows that
the limit h@l may be thought of as a piecewise unifor
system of fluctuating delocalized counterions coupled to
purely two-dimensional system of the fluctuating conden
counterions~and the layer charges!; ~ii ! our approach may be
easily generalized to any number of the fluctuating spe
within the surfaces;~iii ! we show explicitly and intuitively
that the largest contribution;2kbT ln(h/l)/h3 to the pres-
sure P comes from the coupling between the conden
counterion fluctuations and the delocalized counterion fl
tuations. This is somewhat surprising, since the density
the delocalized counterions is extremely low:n0;1/(l h2)
in this limit. One should note finally that th
2kbT ln(h/l)/h3 law for the fluctuation pressure of the cou
terions was also obtained in Ref.@15# with different numeri-
cal prefactors.

III. FINITE-SIZE EFFECTS ON COUNTERION PRESSURE

In the previous section, we showed that within the a
proximation of a mean-field homogeneous counterion d
sity n0(z)5n0, the total fluctuation pressureP can be rep-
resented as a sum of two contributions:P5P l1Pc. Here
we consider in more detail the contributionPc due to the
fluctuations of thefree counterion gas, Eq.~8!. We stress
again that ‘‘free’’ includes those terms in the free energ
corresponding to the fluctuations of the counterions that
not correlatedwith the layer-charge fluctuations~this corre-
lation is captured byPcoup

l term as explained in the previou
section!; this result is the direct consequence of the appro
mation of piecewise homogeneity of the mean-field coun
ion distribution, with no further assumptions. We report he
the results forPc in both asymptotic limitsh!l andh@l
as derived from Eq.~8! ~these results have been alrea
quoted in Secs. II A and II B, respectively!. Of course, the
theory yields a~numerical! interpolation formula as well.

A. Pc in the limit of small intersurface separation

In the limit h!l, wheren052s0 /h, the straightforward
calculation of Eq.~8! yields the asymptotic contribution t
Pc, expanded as a function of the small parameterh/l:
a

ge

e
d

s

d
-
f

-
-

re

i-
r-
e

Pc52
kbT

2pl2h
. ~19!

We now discuss a less formal and more intuitive derivat
of Eq. ~19!. Consider the uniformly negatively charged su
face layer with charge number density 2s0 and the screening
fluctuatingpositive counterions localized within the layer a
proximated as a two-dimensional system, with the sa
mean surface number density 2s0, as required by total
charge neutrality. The fluctuation free energyG2d of this
two-dimensional system is@1#

G2d5
A0kbT

2 E
0

qm dq q

2p
lnS 11

2

lqD
52

A0kbT

2pl2
ln~lqm!, ~20!

where qm is an upper cutoff for the wave vectorq. The
self-energy is subtracted from Eq.~20!; in any case it is
independent ofh. The approximation of a two-dimensiona
system for the counterions is appropriate for length sca
much larger thanh. We thus replace the cutoffqm by qm
5b/h whereb is a constant of order unity. We then find th
Eq. ~19! for the pressurePc arises from the derivative of the
free energy of Eq.~20! with respect toh, independent of the
value of b. We note thatG2d in Eq. ~20! follows from Pc

52(1/A0)]Gc/]h of Eq. ~8!, if we expand forhq!1 at
kz50 @the contribution from all the other modeskzÞ0,
;kbT/(h2l), is irrelevant; it corresponds to the self-ener
and is canceled by the contribution forhq@1#.

In conclusion, we have shown that in the limith!l, Pc

may be obtained from the fluctuation free energy of thetwo-
dimensionalcounterion system, provided the minimal leng
scale is set to be of orderh.

B. Pc in the limit of large intersurface separation

In the limit h@l, one approximates the density of th
delocalized counterionsas n05p/(2l h2). It thus follows
from Eq. ~8! that

Pc.2
4kbT

h3
. ~21!

This is the scaling one would predict@24# from the expres-
sion for the fluctuation free energy of a 3D system:Ginf

c ;
2kbTA0h(n0l )3/2, where n0;1/(l h2). If one considers
only the delocalized counterions, there is an extra, cut
dependent term coming from Eq.~8!, corresponding to the
self-energyGc

sel f;kbTA0hqmn0l , whereqm;1/a and a is
an atomic length scale. However, this is exactly canceled
the contribution of thecondensed counterions.If they are
approximated as two thin slabs of thicknesslc
51/(2pl sc), where sc5s0(12p2l/2h), the volume
number densitync of the counterions within each slab is the
nc5 sc /lc , and the volume of each slab isA0lc . Calcula-
tion of Eq. ~8! with n0[nc andh[lc for each slab yields a



de

lin

e
e

n
ul
he
he

in-

th

r-

-

th

rio

n
n
e
o

e
za-
.

or-
er-

e

r-
ral

c-
rge
de-

5852 PRE 60D. B. LUKATSKY AND S. A. SAFRAN
contribution to the free energy exactly equal to2Gc
sel f/2,

providing an exact cancellation of the self-energy of the
localized counterions.

IV. DISCUSSION

In Sec. II we observed that there was long-range sca
behavior of the interlayer fluctuation pressureP l in both
asymptotic limitsh!l andh@l. This corresponds to scal
free density fluctuations. In this section, we trace the conn
tion between the pressureP l and the interlayer- and
intralayer-charge correlation functions. We shall first defi
all the correlation functions and then summarize the res
for their scaling in Table I. After doing that, we analyze t
range of validity of the results obtained so far within t
model and of the model itself.

A. Inter- and intralayer correlation functions

The inter- and intralayer correlation functions provide
sight into the fluctuations due to the layer charges~andcon-
densed counterionsin the limit h@l) as modified by the
coupling with the fluctuations of the counterions~delocalized
counterionsin the limit h@l). For simplicity, in what fol-
lows until the end of this section, whenever we consider
limit h@l, we calculate the fluctuations of thecondensed
counterionscorrelated with thedelocalized counterions, with
the layer charges held fixed~see Sec. II B!. The density-
density interlayerK12(r) and intralayerK11(r) correlation
functionsKi j (r)[^ds i(r)ds j (0)& are defined as the ave
age of the product of the charge fluctuationsds i(r)ds j (0)
with the probability density proportional toe2bDF, wherer
[(x,y) is the in-plane vector. This averaging yields

Ki j ~r!5E
0

`dq q

2p
Ki j ~q!J0~qr!, ~22!

with Ki j (q)[^ds i(q)ds j (2q)& being a 2D Fourier trans
form of Ki j (r), where

K12~q!5
l12l2

l1l2
,

~23!

K11~q!5
l11l2

l1l2
,

J0 is the Bessel function, andl1 ,l2 ,l1
0, l2

0 are eigenvalues
of the free energy as defined in the Appendix for bo
asymptotic limits. We stress that in the casewithout coupling
between the layer-charge fluctuations and the counte
fluctuations, the interlayerK 12

0 (r)[^ds1(r)ds2(0)&0 and
intralayer K 11

0 (r)[^ds1(r)ds1(0)&0 correlation functions
are defined by the same expressions@i.e., Eqs.~22! and~23!#
asK12(r) andK11(r), respectively, provided the substitutio
l i→l i

0 is performed. The intralayer correlation functio
K 11

0 (r) is divergent. This artificial divergence is due to th
infinite increase of fluctuations due to the self-interaction
charges asr→0 (q→`). Instead ofK 11

0 (r) we will con-
sider the renormalized correlation functionK11

0 : K11
0 (q)

5K 11
0 (q)2 lim

q→`
K 11

0 (q)5K 11
0 (q)22s0. This procedure
-

g

c-

e
ts

e

n

f

is equivalent to the formal definition@25# K11
0 (r)5K 11

0 (r)
22s0d(r), so that the nonphysical self-interaction of th
charges is subtracted out. In what follows, this renormali
tion will be applied to all intralayer correlation functions
The results forK 12

0 (r) andK11
0 (r) are shown in Table I.

In order to capture the effects exclusively due to the c
relation between the counterion fluctuations and the lay
charge fluctuations, we consider the difference

K i j
coup~r!5Ki j ~r!2K i j

0 ~r!, ~24!

TABLE I. Scaling results for the inter- and intralayer charg
density-density correlation functions, wherea.2.1, a8.2.37, and
t.0.15. K 12

0 (r) and K11
0 (r) are the interlayer and intralayer co

relation functions, respectively, for the system with purely late
charge fluctuations~no coupling with the counterion fluctuations!.
K coup(r) is the contribution to the layer charge correlation fun
tions exclusively due to the correlation between the layer cha
fluctuations and the counterion fluctuations. The definitions and
tailed discussion of all correlation functions, includingK 11

in(r), are
given in Sec. IV.

K coup(r) 2s0

pl2 Slnl

h
2aD

h!l, r!h

ps0

2h2 h@l, r!h

2
s0

plh h!l, r!h
K 12

0 (r)
2

s0

plr h!l, r@h

2
1

p2l h3 h@l, r!h

1

2p2l r3 h@l, r@h

K11
0 (r)

2
s0

plr
h!l, r,l

2
s0

plr h@l, r!l

K12(r)5K 12
0 (r)1K coup(r)

2
s0

plh
.K 12

0 ~r!
h!l, r!h

ps0

2h2 h@l, r!h

K11(r)5K11
0 (r)1K coup(r) 2

s0

plr
.K11

0 ~r! h!l, r!h

2
s0

plr
.K11

0 ~r!
h@l, r!l

K 11
in(r)

s0

pl2 Slnl

h
2a8D

h!l, r,h

t

p2l h3 h@l, r!h
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in analogy with what was done before for the press
Pcoup

l ; this differenceK i j
coup(r)5K coup(r), i , j 51,2, is the

same for inter- and intralayer correlation functions in bo
asymptotic limits. The leading order terms inK coup(r) are
the following ~see Table I!:

K coup~r!.
2s0

pl2
„ln~l/h!2a…, h!l, r!h, ~25!

K coup~r!5
ps0

2h2
, h@l, r!h, ~26!

wherea.2.1.
In order to gain a more physical, intuitive understandi

of the coupling contributionK coup(r), let us consider a new
correlation functionK 11

in :

K 11
in~q!5K 11

0 ~q!2 lim
h→`

K 11
0 ~q!; ~27!

here ‘‘in’’ stands for ‘‘induced’’; this is the correlation func
tion of the charge fluctuations within the first layer induc
by the direct interaction with the charge fluctuations with
the second layer~no coupling to the counterion fluctuations!.
In the limit h!l, the correlation functionK 11

in(r) has the
same scaling behavior,

K 11
in~r!.

s0

pl2
@ ln~l/h!2a8#, h!l, r!h, ~28!

as K coup(r) when r!h @compare with Eq.~25!, see also
Table I#, wherea8.2.37. Thus, we see that as long ash
!l, the counterion fluctuations modify the layer-char
fluctuations in much the same way as purely lateral cha
fluctuations in one plane modify the lateral charge fluct
tions in the other plane.

To trace the connection between the pressureP l and the
layer-charge correlation functions, we note that the sca
for the short-distance (r!h) density correlations ofK 12

0 (r)
coincides with the scaling for the pressureP0

l within the
corresponding regimes:K 12

0 (r);2s0 /(lh), if h!l, and
K 12

0 (r);21/(l h3), if h@l. This again is not an accidenta
coincidence. One can check that the pressureP0

l is expressed
through the interlayer correlation functionK 12

0 (q):

P0
l 52

1

2E dq

~2p!2
K 12

0 ~q!
]L12

0

]h
, ~29!

where L12
0 5(2pl /q)e2qh is the Fourier transform of the

direct interaction between the charge fluctuationsds1(r)
andds2(r) within the two layers@third term of Eq.~4!#, and
the integral, Eq.~29!, is proportional toK 12

0 (r) in the limit
r!h. Therefore, only interlayer correlations contribute
the pressureP0

l , while P l is determined by both inter- an
intralayer correlation functions, in fact:

P l52
1

2E dq

~2p!2 FK11~q!
]L̃11

]h
1K12~q!

]L̃12

]h
G , ~30!
e

e
-

g

whereL̃11 and L̃12 in both regimes are defined in the Ap
pendix; they would be equal toL11

0 andL12
0 , respectively, if

no coupling of thecondensed-chargefluctuations with the
delocalized-chargefluctuations@18# would exist in the sys-
tem. Hence, one concludes that the correlation~coupling! of
the layer-charge fluctuations and the counterion fluctuati
results in a contribution from the intralayer correlations
the pressureP l that leads to an additional attraction.

B. Applicability of the theory

We now discuss the range of applicability of the resu
Here we address two questions:~i! Under what conditions
are the fluctuations weak enough that the harmonic appr
mation we adopt is valid for our model~ii ! Under what con-
ditions is the effective Hamiltonian, Eq.~1! ~i.e., the model
itself!, applicable and how are these conditions consist
with ~i!?

The inter- and intralayer fluctuations of the layer charg
are weak if the correlation functions for their fluctuatio
obey K12(r)/s0

2!1 andK11(r)/s0
2!1. The former condi-

tion implies a restriction on the minimal intersurface sepa
tion h ~in the limit h!l) when the pressure isP l;
21/(l2h) and the interlayer correlation function isK12(r)
;2s0

2l /h, while the latter condition determines the low
bound onr in the intralayer correlation functionK11(r);
2s0

2l /r ~in both asymptotic limitsh!l andh@l). It fol-
lows from Table I that these conditions are equivalent toh
@l andr@l , respectively; in the limit of large intersurfac
separations,h@l, the interlayer-charge fluctuations~correla-
tions! are always weak, of course.

Returning to the total free energy of Eq.~1! we note that
the first term is the ideal gas entropy of counterions and la
charges. The condition thath@l and r@l means that the
layer-charge surface densitys0 and the counterion volume
densityn0 should be dilute enough; i.e., the mean elect
static energy of two ions,;e2/r 0 (r 0 is the mean distance
between ions,r 0;s0

21/2 for layer charges, andr 0;n0
21/3 for

counterions!, should be small compared with the entrop
;kbT; this impliesr 0@l ; i.e., the system is entropy dom
nated. One can check that the last inequality is equivalen
l@l .

Summarizing these conditions, one estimates the regio
validity of the results:~i! in the limit h!l we requireh
@l (l@l is satisfied automatically!; ~ii ! in the limit h@l
we requirel@l . Thus all length scales must be larger th
the Bjerrum length for the fluctuations to be considered
small.

The experimentally interesting situation where the flu
tuation attraction is largest, corresponding to the limith,l,
may be realized, e.g., in the measurements of forces betw
surfactant bilayers, adsorbed on mica surfaces@26# or within
a black film @6,27#. Taking the reasonable@5,26# valuess0
;1013 cm22 ~this corresponds to one charge per 1000 Å2,
l.22 Å) and h;10 Å, one can estimate the fluctuatio
attractive pressureP5P l1Pc, Eqs.~12! and ~13!:

P52
7

4

kbT

pl2h
.253106

dyn

cm2
.
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The Poisson-Boltzmann repulsive pressurePPB is ~see, how-
ever, Ref.@28#!

PPB5kbTn05
kbT

pll h
.83106

dyne

cm2
,

@this is derived in Ref.@20#, Eq. ~5.96!#; the values ofh and
l are at the upper bound of the limith!l and, of course, the
corresponding scaling results for pressureP and correlation
functions are accurate deep inside this region and only
proximately correct at its boundaries. We also note that
pressure of the order of 106 dyne/cm2 is measurable in cur
rent force balance experiments@4–6#. Even in the case when
the fluctuation attraction is not dominant, it is still of th
same order of magnitude as Poisson-Boltzmann repuls
and combined with van der Waals interaction ath<50 Å, it
may overcome the repulsive interaction completely, or m
combine with the repulsion to give an optimal, minimal e
ergy interlayer spacing.

V. CONCLUSION

In summary, we derived the fluctuation contributions
the pressure between surfaces with mobile layer charge
the presence of delocalized counterions without added
The correlation of the layer-charge fluctuations~and thecon-
densed counterionfluctuations in the limith@l) with the
counterion fluctuations~delocalized counterionfluctuations
in the limit h@l) was taken into account; this correlatio
~coupling! gives rise to a different significant contributio
Pcoup

l to the fluctuation pressure in each asymptotic regim
h!l @Pcoup

l ;21/(l2h)# andh@l @Pcoup
l ;2 ln(h/l)/h3#;

we stress that the term2 ln(h/l)/h3 arising from the coupling
represents the dominant contribution to the total fluctuat
pressureP in this limit. We also showed in an intuitive wa
that the counterion fluctuation pressurePc goes continuously
from 2D-like to 3D-like behavior ash increases; for smallh,
Pc can be derived by considering the counterions as a
Coulomb gas with the smallest length scale equal to tha
the film thicknessh. The correlation functions obtaine
within the model show long-range power law behavior b
no indication of the phase transitions was obtained.
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APPENDIX: DETAILS OF CALCULATIONS FOR SEC. II

In this appendix we summarize the details of calculatio
performed in Sec. II. Let us rewrite Eq.~4! in the form
p-
e

n,

y
-

in
lt.

:

n

D
of

t

d
5-
n
e

s

bDF5
1

2E dn3~r !L33
0 ~r2r 8!dn3~r 8!dr dr 8

1
1

2 (
i , j 51,2

E ds i~r!L i j
0 ~r2r8!ds j~r8!dr dr8

1 (
i 51,2

E ds i~r!L i3
0 ~r2r8,z8!dn3~r 8!dr dr 8,

~A1!

whereL i j
0 is a 333 symmetric matrix:

L11
0 ~r2r8!5L22

0 ~r2r8!5
d~r2r8!

s0
1

l

ur2r8u
,

L12
0 ~r2r8!5

l

A~r2r8!21h2
,

L13
0 ~r2r8,z8!52

l

A~r2r8!21~z82h!2
,

L23
0 ~r2r8,z8!52

l

A~r2r8!21z82
,

L33
0 ~r2r 8!5

d~r2r 8!

n0~z!
1

l

ur2r 8u
. ~A2!

The integration with respect to thez coordinate in Eq.~A1!
~and everywhere in the text! is performed within the finite
width h of the film: *0

hdz. As explained in Sec. II, we ap
proximate the counterion densityn0(z) by a piecewise uni-
form one; we thus approximate:n0(z)5n0. In order to per-
form the functional integration in Eq.~2!, we can rewrite the
free energy~shifting dn3) of Eq. ~A1! in Fourier representa
tion with periodic boundary conditions, so that it is a qu
dratic function ofdñ3 andds i separately:

bDF5
1

2A0
(

i , j 51,2
(

q
ds i~q!L̃ i j ~q!ds j~2q!1bDFc,

~A3!

where

bDFc5
1

2A0h (
k

dñ3~k!L33
0 ~k!dñ3~2k!, ~A4!

with

L33
0 ~k!5

1

n0
1

4pl

k2
@12v~k!#; ~A5!

herek[(q,kz), k25q21kz
2 , kz52pm/h, m is an integer,

andv(k) is the contribution due to the finite size of the film

v~k!5
~12e2hq!

hq

q22kz
2

k2
. ~A6!
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We note that the Fourier transform of the counterion fluct
tion free energy@the first term of Eq.~A1!# also includes the
nondiagonal~coupling wave vectorskz andkz8) contribution
due to the finite size of the system. This nondiagonal term
omitted in Eq. ~A4! for the following reasons: Finite-siz
corrections reduce the free energy of the fluctuations;
lowest fluctuation contributions are obtained for wave v
tors kz.0. Thus, the nondiagonal terms do not contribute
the lowest free energy modes of the system. More deta
calculations show that the largest contribution to the press
comes from the termkz50. Because of the finite size, the
is a gap in the spectrum. In the limith!l all the higher
modes contribute to terms in the pressure that are high o
in h/l. In the opposite limith@l, the nondiagonal term is
higher order in 1/h for any kzÞ0.

The layer-charge interaction~renormalized by the cou
pling with the counterion fluctuations! matrix elements
L̃ i j (q) are

L̃ i j ~q!5L i j
0 ~q!2G i j ~q!, i , j 51,2, ~A7!

with

L11
0 ~q!5L22

0 ~q!5
1

s0
1

2pl

q
,

L12
0 ~q!5

2pl

q
e2qh; ~A8!

L11
0 (q),L12

0 (q) are the Fourier transforms of the correspon
ing matrix elements due to the purely layer-charge fluct
tions in Eq.~A2!; G i j (q) is the contribution which modifies
the layer-charge interactions, due to the coupling of
layer-charge fluctuations with the counterion fluctuatio
G i j (q) is specified below in both asymptotic limits.

Having obtainedDF, Eq. ~A3!, in diagonalized form, one
can perform the functional integration in Eq.~2!. Integrating
out dñ3 first ~note thatDdñ35Ddn3), one can obtainPc in
the following form:

Pc52
kbT

2

]

]h (
kz

E dq

~2p!2
ln@n0L33

0 ~k!#. ~A9!

Equation~A9! is identical to Eq.~8! quoted in Sec. II without
derivation. Integrating in Eq.~2! with respect tods1() and
ds2(r), we immediately find

P l52
kbT

2

]

]hE dq

~2p!2
ln~l1l2 /a0

2!, ~A10!

wherea0 is a microscopic area, andl1 ,l2 are the eigenval-
ues of 232 matrix L̃ i j (q):

l15L̃11~q!2L̃12~q!,

l25L̃11~q!1L̃12~q!. ~A11!

The contributionexclusively due to the layer charge fluctu
tions P0

l is similar to Eq.~A10!, provided the substitution
l1→l1

0 andl2→l2
0 is performed,
-

is

e
-
o
d
re

er

-
-

e
;

P0
l 52

kbT

2

]

]hE dq

~2p!2
ln~l1

0l2
0/a0

2!, ~A12!

with l1
0 ,l2

0 being the eigenvalues of 232 matrixL i j
0 (q) Eq.

~A8!:

l1
05

1

s0
1

2pl

q
~12e2qh!,

l2
05

1

s0
1

2pl

q
~11e2qh!. ~A13!

We stress again thatPcoup
l 5P l2P0

l would be equal to zero
if no couplingof the layer-charge fluctuations with the cou
terion fluctuations would exist in the system. In what fo
lows, we specify in detail howP l is obtained in both
asymptotic regimesh!l andh@l.

1. Limit of small intersurface separations

In the limit h!l analyzed in Sec. II A, one hasn0
52s0 /h. In this limit G5G i j is

G5
2«2

s0

~12e2x!2

x@x314«~x211e2x!#
, ~A14!

wherex5qh, and«5h/l is a small parameter in the limi
h!l. The coupling contributionPcoup

l is then

Pcoup
l 5P l2P0

l 52
kbT

2

]

]hE dq

~2p!2
lnS 12

2G

l2
0 D .

~A15!

The explicit scaling laws forP0
l , Pcoup

l , andP l reported in
Sec. II A, Eqs.~10!, ~11!, and ~12! are obtained from Eqs
~A12!, ~A15!, and ~A10!, respectively, where one usesG
determined by Eq.~A14!, and

l15l1
0 ,

l25l2
022G, ~A16!

and expands in the small parameterh/l.

2. Limit of large intersurface separations

As we explained in Sec. II B, in the limith@l one should
reformulate the problem to includecondensed counterionsas
an additional species of positive charges localized within
layers~the layer charges are negative! with the average sur-
face number density of chargesc5s0(12p2l/2h). There-
fore, instead of Eq.~1!, the effective Hamiltonian in this
limit is the following:
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bF5 (
i 51,2
a56

E dr ni
a~r !$ ln@ni

a~r !v0#21%

1E dr n3~r !$ ln@n3~r !v0#21%

1
l

2 (
i , j 51,2
a,g56

zi
azj

gE dr dr 8
ni

a~r !nj
g~r 8!

ur2r 8u

1l (
i 51,2
a56

zi
aE dr dr 8

ni
a~r !n3~r 8!

ur2r 8u

1
l

2E dr dr 8
n3~r !n3~r 8!

ur2r 8u
, ~A17!

with n1
a(r )5s1

a(r)d(z2h), n2
a(r )5s2

a(r)d(z), a56, z1
1

5z2
151, and z1

25z2
2521; here s1

2(r)5s1(r), s2
2(r)

5s2(r) are the surface number densities of the nega
layer charges on layers 1 and 2, respectively, ands1

1(r),
s2

1(r) are the corresponding surface number densities of
positivecondensed counterions; n3(r ) is the volume number
density of thedelocalized counterions.

One defines the thermal fluctuation contributionG to the
free energy in analogy with Eq.~2!,

e2bG5 )
i 51,2
a56

E Dds i
a~r!Ddn3~r !e2bDF, ~A18!

where the second variationDF of F has a form similar to Eq.
~4! @compare with Eqs.~A1! and ~A2!#:

bDF5
1

2E dn3~r !L33
0 ~r2r 8!dn3~r 8!dr dr 8

1
1

2 (
i , j 51,2
a,b56

E ds i
a~r!L i j

ab~r2r8!ds j
b~r8!dr dr8

1 (
i 51,2
a56

E ds i
a~r!L i3

a ~r2r8,z8!dn3~r 8!dr dr 8,

~A19!

with

L11
aa~r2r8!5L22

aa~r2r8!5
d~r2r8!

s0
a

1
l

ur2r8u
,

L12
ab~r2r8!5z1

az2
b l

A~r2r8!21h2
,

L11
12~r2r8!5L22

12~r2r8!52
l

ur2r8u

L13
a ~r2r8,z8!5z1

a l

A~r2r8!21~z82h!2
,

e

e

L23
a ~r2r8,z8!5z2

a l

A~r2r8!21z82
,

L33
0 ~r2r 8!5

d~r2r 8!

n0
1

l

ur2r 8u
, ~A20!

wheres0
25s0 ands0

15sc5s0(12p2l/2h) are the aver-
age surface number densities of the layer charges and
condensed counterions respectively, in each layer (sc is ex-
plained in Sec.II B!; n05p/(2l h2) is the volume number
density of the delocalized counterions.

One findsDF in Fourier representation:

bDF5
1

2A0
(

i , j 51,2
a,b56

(
q

ds i
a~q!L̃ i j

ab~q!ds j
b~2q!1bDFc,

~A21!

where

L̃ i j
ab~q!5L i j

ab~q!2G i j
ab~q! ~A22!

and

G i j
ab~q!5zi

azj
bG. ~A23!

Within this limit n05p/(2l h2) ~see Sec. II B!, andG can
be represented in the form

G5
p3hl ~12e2x!2

x2

coth~ 1
2 Ax212p2!

Ax212p2
, ~A24!

where x5qh. In Eq. ~A22!, L i j
ab(q) is a 434 symmetric

matrix, analogous to Eq.~A8!:

L11
aa~q!5L22

aa~q!5
1

s0
a

1
2pl

q
,

L11
12~q!5L22

12~q!52
2pl

q
,

L12
ab~q!5z1

az2
b 2pl

q
e2qh. ~A25!

Substituting Eq.~A21! into Eq. ~A18!, and first integrating
out dn3 (Ddñ35Ddn3), one obtainsPc, Eqs.~8! and~A9!,
with n05p/(2l h2) in this limit. Integrating out the layer-
charge and condensed counterion contributionsds i

a(r), i
51,2, a56, we find expressions analogous to Eqs.~A10!,
~A12!, and~A15!, respectively:

P l52
kbT

2

]

]hE dq

~2p!2
ln~det@L̃ i j

ab#/a0
4!, ~A26!

P0
l 52

kbT

2

]

]hE dq

~2p!2
ln~det@L i j

ab#/a0
4!, ~A27!
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Pcoup
l 52

kbT

2

]

]hE dq

~2p!2
lnS 12

2G

l2
largeD , ~A28!

whereG is determined by Eq.~A24!, and

l2
large5

1

2s0
1

2pl

q
~11e2qh!, ~A29!

is similar to l2
0, Eq. ~A13!, provided the substitutions0

→2s0 in l2
0 is performed. Therefore, the effect of the ext

layer-charge component, i.e., due to thecondensed counter
.M

,

tt

ns

um
rg
ll
ir
h

ions, results is just to double the surface number density
charge, compared to the case of the single layer-charge c
ponent. The results reported in Sec. II B forP0

l , Eq. ~15!,
and Pcoup

l , Eq. ~16!, may be found from Eqs.~A27! and
~A28!, respectively, by expansion with respect to the sm
parameterl/h. We stress that Eq.~A28! is obtained within
the approximationsc.s0; the corrections to Eq.~A28! are
of higher order inl/h.

Finally we note that the eigenvaluesl1 ,l2 that should be
substituted in Eq.~23! for the correlation functionsK12(q)
and K11(q) in the limit h@l are analogous to Eq.~A16!
with G determined by Eq.~A24!.
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